Дифракция света на дифракционной решетке. Дифракционная решетка Дифракция световых волн



















































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

(Урок получения новых знаний 11 класс, профильный уровень – 2 часа).

Образовательные цели урока:

  • Ввести понятие дифракции света
  • Объяснить дифракцию света с помощью принципа Гюйгенса-Френеля
  • Ввести понятие зон Френеля
  • Объяснить устройство и принцип действия дифракционной решетки

Развивающие цели урока

  • Развитие умений и навыков по качественному и количественному описанию дифракционных картин

Оборудование : проектор, экран, презентация.

План урока

  • Дифракция света
  • Дифракция Френеля
  • Дифракция Фраунгофера
  • Дифракционная решетка

Ход урока.

1. Организационный момент.

2. Изучение нового материала.

Дифракция - явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Если свет представляет собой волновой процесс, на что убедительно указывает явление интерференции, то должна наблюдаться и дифракция света.

Дифракция света - явление отклонения световых лучей в область геометрической тени при прохождении мимо краев препятствий или сквозь отверстия, размеры которых сравнимы с длиной световой волны (слайд№2 ).

Тот факт, что свет заходит за края препятствий, известен людям давно. Первое научное описание этого явления принадлежит Ф. Гримальди. В узкий пучок света Гримальди помещал различные предметы, в частности тонкие нити. При этом тень на экране оказывалась шире, чем это должно быть согласно законам геометрической оптики. Кроме того, по обе стороны тени обнаруживались цветные полосы. Пропуская тонкий пучок света через маленькое отверстие, Гримальди также наблюдал отступление от закона прямолинейного распространения света. Светлое пятно против отверстия оказывалось большего размера, чем это следовало ожидать при прямолинейном распространении света (слайд№2 ).

В 1802 г. Т. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (слайд №3 ).

В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий. Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем, весьма точно.

Теория дифракции

Французский ученый О. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом (слайд №4 ).

Различают два случая дифракции:

Если преграда, на которой происходит дифракция, находится вблизи от источника света или от экрана, на котором происходит наблюдение, то фронт падающих или дифрагированных волн имеет криволинейную поверхность (например, сферическую); этот случай называется дифракцией Френеля.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Дифракцию плоских волн часто называют дифракцией Фраунгофера (слайд №5 ).

Метод зон Френеля.

Для объяснения особенностей дифракционных картин на простых объектах (слайд №6 ), Френель придумал простой и наглядный метод группировки вторичных источников – метод построения зон Френеля. Этот метод позволяет приближенным способом рассчитывать дифракционные картины (слайд №7 ).

Зоны Френеля – множество когерентных источников вторичных волн, максимальная разность хода между которыми равна λ/2 .

Если разность хода от двух соседних зон равна λ /2 , следовательно, колебания от них приходят в точку наблюдения М в противоположных фазах, так, что волны от любых двух соседних зон Френеля гасят друг друга (слайд №8 ).

Например, при пропускании света через отверстие малого размера, в точке наблюдения можно обнаружить как светлое, так и темное пятно. Получается парадоксальный результат – свет не проходит через отверстие!

Для объяснения результата дифракции, необходимо посмотреть, сколько зон Френеля укладывается в отверстии. Когда на отверстии укладывается нечетное число зон максимум (светлое пятно). Когда на отверстии укладывается четное число зон , то в точке наблюдения возникнет минимум (темное пятно). На самом деле свет, конечно же, проходит через отверстие, но интерференционные максимумы возникают в соседних точках (слайд №9 -11 ).

Зонная пластинка Френеля.

Из теории Френеля можно получить еще ряд замечательных, иногда парадоксальных следствий. Одно из них – возможность использования в роли собирающей линзы зонной пластинки. Зонная пластинка – прозрачный экран с чередующимися светлыми и темными кольцами. Радиусы колец подбираются так, чтокольца из непрозрачного материала закрывают все четные зоны, тогда в точку наблюдения приходят колебания только от нечетных зон, происходящих в одной и той же фазе, что приводит к увеличению интенсивности света в точке наблюдения (слайд №12 ).

Второе замечательное следствие теории Френеля – предсказание существования светлого пятна (пятна Пуассона ) в области геометрической тени от непрозрачного экрана (слайд № 13-14 ).

Для наблюдения светлого пятна в области геометрической тени необходимо, чтобы непрозрачный экран перекрывал небольшое число зон Френеля (одну-две).

Дифракция Фраунгофера.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Плоскую волну можно также получить, располагая источник света в фокусе собирающей линзы (слайд №15 ).

Дифракцию плоских волн часто называют дифракцией Фраунгофера по имени немецкого ученого Фраунгофера. Этот вид дифракции рассматривается особо по двум причинам. Во-первых, это более простой частный случай дифракции, а во-вторых, такого рода дифракция часто встречается в разнообразных оптических приборах.

Дифракция на щели

Большое практическое значение имеет случай дифракции света на щели. При освещении щели параллельным пучком монохроматического света на экране получается ряд темных и светлых полос, быстро убывающих по интенсивности (слайд №16 ).

Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центральной полосы, а освещенность меняется вдоль экрана периодически, в соответствие с условиями максимума и минимума (слайд№17 , флеш-анимация «Дифракция света на щели»).

Вывод:

  • а) с уменьшением ширины щели центральная светлая полоса расширяется;
  • б) при заданной ширине щели, расстояние между полосами тем больше, чем больше длина волны света;
  • в) поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов;
  • г) при этом главный максимум будет общим для всех длин волн и представится в виде белой полоски, а боковые максимумы - это цветные полосы с чередованием цветов от фиолетового цвета к красному.

Дифракция на двух щелях.

Если имеются две идентичные параллельные щели, то они дают одинаковые накладывающиеся друг на друга дифракционные картины, вследствие чего максимумы соответственно усиливаются, а, кроме того, происходит взаимная интерференция волн от первой и второй щелей. В результате минимумы будут на прежних местах, так как это те направления, по которым ни одна из щелей не посылает света. Кроме того, возможны направления, в которых свет, посылаемый двумя щелями, взаимно гасится. Таким образом, между двумя главными максимумами располагается один добавочный минимум, а максимумы становятся при этом более узкими, чем при одной щели (слайды№18-19 ). Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены. При этом световая энергия перераспределяется так, что большая ее часть приходится на максимумы, а в минимумы попадает незначительная часть энергии (слайд№20 ).

Дифракционная решетка .

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками (слайд№21 ). Если на решетку падает монохроматическая волна – то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее- экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов (слайд№22 ).

Положение всех максимумов, кроме главного зависит от длины волны. Поэтому если на решетку падает белый свет, то он разлагается в спектр. Поэтому дифракционная решетка является спектральным прибором, служащим для разложения света в спектр. С помощью дифракционной решетки можно точно измерять длину волны, так как при большом числе щелей области максимумов интенсивности сужаются, превращаясь в тонкие яркие полосы, а расстояние между максимумами (ширина темных полос) растет (слайд №23-24 ).

Разрешающая способность дифракционной решетки.

Для спектральных приборов, содержащих дифракционную решетку, важна способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн.

Способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн, называют разрешающей способностью решетки (слайд №25-26 ).

Если мы хотим разрешить две близкие спектральные линии, то необходимо добиться, чтобы интерференционные максимумы, соответствующие каждой из них, были по возможности более узкими. Для случая дифракционной решетки это означает, что общее число штрихов, нанесенных на решетку, должно быть по возможности очень большим. Так, в хороших дифракционных решетках, имеющих около 500 штрихов на одном миллиметре, при общей длине около 100 мм, полное число штрихов равно 50000.

Решетки в зависимости от их применения бывают металлическими или стеклянными. Лучшие металлические решетки имеют до 2000 штрихов на один миллиметр поверхности, при этом общая длина решетки составляет 100-150 мм. Наблюдения на металлических решетках проводят только в отраженном свете, а на стеклянных – чаще всего в проходящем свете.

Наши ресницы с промежутками между ними представляют собой грубую дифракционную решетку. Если посмотреть, прищурившись, на яркий источник света, то можно обнаружить радужные цвета. Явления дифракции и интерференции света помогают

Природе раскрашивать всё живое, не прибегая к использованию красителей (слайд№27 ).

3. Первичное закрепление материала.

Контрольные вопросы

  1. Почему дифракция звука повседневно более очевидна, чем дифракция света?
  2. Каковы дополнения Френеля к принципу Гюйгенса?
  3. В чем заключается принцип построения зон Френеля?
  4. В чем заключается принцип действия зонных пластинок?
  5. Когда наблюдается дифракция Френеля, дифракция Фраунгофера?
  6. В чем отличие дифракции Френеля на круглом отверстии при освещении его монохроматическим и белым светом?
  7. Почему дифракция не наблюдается на больших отверстиях и больших дисках?
  8. Чем определяется тот факт, будет ли число зон Френеля, открываемых отверстием, четным или нечетным?
  9. Каковы характерные особенности дифракционной картины, получающейся при дифракции на малом непрозрачном диске.
  10. Каково отличие дифракционной картины на щели при освещении монохроматическим и белым светом?
  11. Какова предельная ширина щели, при которой еще будут наблюдаться минимумы интенсивности?
  12. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  13. Как изменится дифракционная картина, если увеличить общее число штрихов решетки, не меняя постоянной решетки?
  14. Сколько дополнительных минимумов и максимумов возникает при дифракции на шести щелях?
  15. Почему дифракционная решетка разлагает белый свет в спектр?
  16. Как определить наибольший порядок спектра дифракционной решетки?
  17. Как изменится дифракционная картина при удалении экрана от решетки?
  18. Почему при использовании белого света только центральный максимум белый, а боковые максимумы радужно окрашены?
  19. Почему штрихи на дифракционной решетке должны быть тесно расположены друг к другу?
  20. Почему штрихов должно быть большое число?

Примеры некоторых ключевых ситуаций (первичное закрепление знаний) (слайд №29-49)

  1. Дифракционная решетка, постоянная которой равна 0,004 мм, освещается светом с длиной волны 687 нм. Под каким углом к решетке нужно проводить наблюдение, чтобы видеть изображение спектра второго порядка (слайд№29 ).
  2. На дифракционную решетку, имеющую 500 штрихов на 1 мм, падает монохроматический свет длиной волны 500 нм. Свет падает на решетку перпендикулярно. Какой наибольший порядок спектра можно наблюдать? (слайд№30 ).
  3. Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 430 нм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать, что sinφ ≈ tgφ (слайд№31 ).
  4. Дифракционная решетка, период которой равен 0,005 мм, расположена параллельно экрану на расстоянии 1,6 м от него и освещается пучком света длиной волны 0,6 мкм, падающим по нормали к решетке. Определите расстояние между центром дифракционной картины и вторым максимумом. Считать, что sinφ ≈ tgφ (слайд № 32 ).
  5. Дифракционная решетка с периодом 10-5 м расположена параллельно экрану на расстоянии 1,8 м от него. Решетка освещается нормально падающим пучком света длиной волны 580 нм. На экране на расстоянии 20.88 см от центра дифракционной картины наблюдается максимум освещенности. Определите порядок этого максимума. Считать, что sinφ ≈ tgφ (слайд №33 ).
  6. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального и на расстоянии 1,8 м от решетки. Найдите длину световой волны (слайд №34 ).
  7. Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются друг с другом. Какой длине волны в спектре третьего порядка соответствует длина волны 700 нм в спектре второго порядка? (слайд №35 ).
  8. Плоская монохроматическая волна с частотой 8 1014 Гц падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в фокальной плоскости линзы. Найдите расстояние между ее главными максимумами 1 и 2 порядков. Считать, что sinφ ≈ tgφ (слайд №36 ).
  9. Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 380 нм до 760 нм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм? (слайд №37 ).
  10. Какова должна быть общая длина дифракционной решетки, имеющей 500 штрихов на 1 мм, чтобы с ее помощью разрешить две линии спектра с длинами волн 600,0 нм и 600,05 нм? (слайд №40 ).
  11. Определите разрешающую способность дифракционной решетки, период которой равен 1,5 мкм, а общая длина 12 мм, если на нее падает свет с длиной волны 530 нм (слайд №42 ).
  12. Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разрешить две желтые линии натрия с длинами волн 589 нм и 589,6 нм. Какова длина такой решетки, если постоянная решетки 10 мкм (слайд №44 ).
  13. Определите число открытых зон при следующих параметрах:
    R =2 мм; a=2.5 м; b=1.5 м
    а) λ=0.4 мкм.
    б) λ=0.76 мкм (слайд №45 ).
  14. Щель размером 1,2 мм освещается зеленым светом с длиной волны 0,5 мкм. Наблюдатель расположен на расстоянии 3 м от щели. Увидит ли он дифракционную картину (слайд №47 ).
  15. Щель размером 0,5 мм освещается зеленым светом от лазера с длиной волны 500 нм. На каком расстоянии от щели можно отчетливо наблюдать дифракционную картину (слайд №49 ).

4. Домашнее задание (слайд№50).

Учебник: § 71-72 (Г.Я. Мякишев, Б.Б. Буховцев. Физика.11).

Сборник задач по физике № 1606,1609,1612, 1613,1617 (Г.Н.Степанова).

Темы кодификатора ЕГЭ: дифракция света, дифракционная решётка.

Если на пути волны возникает препятствие, то происходит дифракция - отклонение волны от прямолинейного распространения. Это отклонение не сводится к отражению или преломлению, а также искривлению хода лучей вследствие изменения показателя преломления среды.Дифракция состоит в том, что волна огибает край препятствия и заходит в область геометрической тени.

Пусть, например, плоская волна падает на экран с достаточно узкой щелью (рис. 1 ). На выходе из щели возникает расходящаяся волна, и эта расходимость усиливается с уменьшением ширины щели.

Вообще, дифракционные явления выражены тем отчётливей, чем мельче препятствие. Наиболее существенна дифракция в тех случаях, когда размер препятствия меньше или порядка длины волны. Именно такому условию должна удовлетворять ширина щели на рис. 1.

Дифракция, как и интерференция, свойственна всем видам волн - механическим и электромагнитным. Видимый свет есть частный случай электромагнитных волн; неудивительно поэтому, что можно наблюдать
дифракцию света.

Так, на рис. 2 изображена дифракционная картина, полученная в результате прохождения лазерного луча сквозь небольшое отверстие диаметром 0,2мм.

Мы видим, как и полагается, центральное яркое пятно; совсем далеко от пятна расположена тёмная область - геометрическая тень. Но вокруг центрального пятна - вместо чёткой границы света и тени! - идут чередующиеся светлые и тёмные кольца. Чем дальше от центра, тем менее яркими становятся светлые кольца; они постепенно исчезают в области тени.

Напоминает интерференцию, не правда ли? Это она и есть; данные кольца являются интерференционными максимумами и минимумами. Какие же волны тут интерферируют? Скоро мы разберёмся с этим вопросом, а заодно и выясним, почему вообще наблюдается дифракция.

Но прежде нельзя не упомянуть самый первый классический эксперимент по интерференции света - опыт Юнга, в котором существенно использовалось явление дифракции.

Опыт Юнга.

Всякий эксперимент с интерференцией света содержит некоторый способ получения двух когерентных световых волн. В опыте с зеркалами Френеля, как вы помните, когерентными источниками являлись два изображения одного и того же источника, полученные в обоих зеркалах.

Самая простая идея, которая возникла прежде всего, состояла в следующем. Давайте проколем в куске картона два отверстия и подставим под солнечные лучи. Эти отверстия будут когерентными вторичными источниками света, поскольку первичный источник один - Солнце. Следовательно, на экране в области перекрытия пучков, расходящихся от отверстий, мы должны увидеть интерференционную картину.

Такой опыт был поставлен задолго до Юнга итальянским учёным Франческо Гримальди (который открыл дифракцию света). Интерференции, однако, не наблюдалось. Почему же? Вопрос это не очень простой, и причина заключается в том, что Солнце - не точечный, а протяжённый источник света (угловой размер Солнца равен 30 угловым минутам). Солнечный диск состоит из множества точечных источников, каждый из которых даёт на экране свою интерференционную картину. Накладываясь, эти отдельные картины "смазывают" друг друга, и в результате на экране получается равномерная освещённость области перекрытия пучков.

Но если Солнце является чрезмерно "большим", то нужно искусственно создать точечный первичный источник. С этой целью в опыте Юнга использовано маленькое предварительное отверстие (рис. 3 ).


Рис. 3. Схема опыта Юнга

Плоская волна падает на первое отверстие, и за отверстием возникает световой конус, расширяющийся вследствие дифракции. Он достигает следующих двух отверстий, которые становятся источниками двух когерентных световых конусов. Вот теперь - благодаря точечности первичного источника - в области перекрытия конусов будет наблюдаться интерференционная картина!

Томас Юнг осуществил этот эксперимент, измерил ширину интерференционных полос, вывел формулу и с помощью этой формулы впервые вычислил длины волн видимого света. Вот почему этот опыт вошёл в число самых знаменитых в истории физики.

Принцип Гюйгенса–Френеля.

Напомним формулировку принципа Гюйгенса: каждая точка, вовлечённая в волновой процесс, является источником вторичных сферических волн; эти волны распространяются от данной точки, как из центра, во все стороны и накладываются друг на друга.

Но возникает естественный вопрос: а что значит "накладываются"?

Гюйгенс свёл свой принцип к чисто геометрическому способу построения новой волновой поверхности как огибающей семейства сфер, расширяющихся от каждой точки исходной волновой поверхности. Вторичные волны Гюйгенса - это математические сферы, а не реальные волны; их суммарное действие проявляется только на огибающей, т. е. на новом положении волновой поверхности.

В таком виде принцип Гюйгенса не давал ответа на вопрос, почему в процессе распространения волны не возникает волна, идущая в обратном направлении. Не объяснёнными оставались и дифракционные явления.

Модификация принципа Гюйгенса состоялась лишь спустя 137 лет. Огюстен Френель заменил вспомогательные геометрические сферы Гюйгенса на реальные волны и предположил, что эти волны интерферируют друг с другом.

Принцип Гюйгенса–Френеля. Каждая точка волновой поверхности служит источником вторичных сферических волн. Все эти вторичные волны являются когерентными ввиду общности их происхождения от первичного источника (и, стало быть, могут интерферировать друг с другом); волновой процесс в окружающем пространстве есть результат интерференции вторичных волн.

Идея Френеля наполнила принцип Гюйгенса физическим смыслом. Вторичные волны, интерферируя, усиливают друг друга на огибающей своих волновых поверхностей в направлении "вперёд", обеспечивая дальнейшее распространение волны. А в направлении "назад" происходит их интерференция с исходной волной, наблюдается взаимное гашение, и обратная волна не возникает.

В частности, свет распространяется там, где вторичные волны взаимно усиливаются. А в местах ослабления вторичных волн мы будем видеть тёмные участки пространства.

Принцип Гюйгенса–Френеля выражает важную физическую идею: волна, удалившись от своего источника, в дальнейшем "живёт своей жизнью" и уже никак от этого источника не зависит. Захватывая новые участки пространства, волна распространяется всё дальше и дальше вследствие интерференции вторичных волн, возбуждённых в различных точках пространства по мере прохождения волны.

Как принцип Гюйгенса–Френеля объясняет явление дифракции? Почему, например, происходит дифракция на отверстии? Дело в том, что из бесконечной плоской волновой поверхности падающей волны экранное отверстие вырезает лишь маленький светящийся диск, и последующее световое поле получается в результате интерференции волн вторичных источников, расположенных уже не на всей плоскости, а лишь на этом диске. Естественно, новые волновые поверхности теперь не будут плоскими; ход лучей искривляется, и волна начинает распространяться в разных направлениях, не совпадающих с первоначальным. Волна огибает края отверстия и проникает в область геометрической тени.

Вторичные волны, испущенные различными точками вырезанного светлого диска, интерферируют друг с другом. Результат интерференции определяется разностью фаз вторичных волн и зависит от угла отклонения лучей. В результате возникает чередование интерференционных максимумов и минимумов - что мы и видели на рис. 2 .

Френель не только дополнил принцип Гюйгенса важной идеей когерентности и интерференции вторичных волн, но и придумал свой знаменитый метод решения дифракционных задач, основанный на построении так называемых зон Френеля . Изучение зон Френеля не входит в школьную программу - о них вы узнаете уже в вузовском курсе физики. Здесь мы упомянем лишь, что Френелю в рамках своей теории удалось дать объяснение нашего самого первого закона геометрической оптики - закона прямолинейного распространения света.

Дифракционная решётка.

Дифракционная решётка - это оптический прибор, позволяющий получать разложение света на спектральные составляющие и измерять длины волн. Дифракционные решётки бывают прозрачными и отражательными.

Мы рассмотрим прозрачную дифракционную решётку. Она состоит из большого числа щелей ширины , разделённых промежутками ширины (рис. 4 ). Свет проходит только сквозь щели; промежутки свет не пропускают. Величина называется периодом решётки.


Рис. 4. Дифракционная решётка

Дифракционная решётка изготавливается с помощью так называемой делительной машины, которая наносит штрихи на поверхность стекла или прозрачной плёнки. При этом штрихи оказываются непрозрачными промежутками, а нетронутые места служат щелями. Если, например, дифракционная решётка содержит 100 штрихов на миллиметр, то период такой решётки будет равен: d= 0,01 мм= 10 мкм.

Сперва мы посмотрим, как проходит сквозь решётку монохроматический свет, т. е. свет со строго определённой длиной волны. Отличным примером монохроматического света служит луч лазерной указки длина волны около 0,65 мкм).

На рис. 5 мы видим такой луч, падающий на одну из дифракционных решёток стандартного набора. Щели решётки расположены вертикально, и на экране за решёткой наблюдаются периодически расположенные вертикальные полосы.

Как вы уже поняли, это интерференционная картина. Дифракционная решётка расщепляет падающую волну на множество когерентных пучков, которые распространяются по всем направлениям и интерферируют друг с другом. Поэтому на экране мы видим чередование максимумов и минимумов интерференции - светлых и тёмных полос.

Теория дифракционной решётки весьма сложна и во всей своей полноте оказывается далеко за рамками школьной программы. Вам следует знать лишь самые элементарные вещи, связанные с одной-единственной формулой; эта формула описывает положения максимумов освещённости экрана за дифракционной решёткой.

Итак, пусть на дифракционную решётку с периодом падает плоская монохроматическая волна (рис. 6 ). Длина волны равна .


Рис. 6. Дифракция на решётке

Для большей чёткости интерференционной картины можно поставить линзу между решёткой и экраном, а экран поместить в фокальной плоскости линзы. Тогда вторичные волны, идущие параллельно от различных щелей, соберутся в одной точке экрана (побочном фокусе линзы). Если же экран расположен достаточно далеко, то особой необходимости в линзе нет - лучи, приходящие в данную точку экрана от различных щелей, будут и так почти параллельны друг другу.

Рассмотрим вторичные волны, отклоняющиеся на угол .Разность хода между двумя волнами, идущими от соседних щелей, равна маленькому катету прямоугольного треугольника с гипотенузой ; или, что то же самое, эта разность хода равна катету треугольника . Но угол равен углу , поскольку это острые углы со взаимно перпендикулярными сторонами. Следовательно, наша разность хода равна .

Интерференционные максимумы наблюдаются в тех случаях, когда разность хода равна целому числу длин волн:

(1)

При выполнении этого условия все волны, приходящие в точку от различных щелей, будут складываться в фазе и усиливать друг друга. Линза при этом не вносит дополнительной разности хода - несмотря на то, что разные лучи проходят через линзу разными путями. Почему так получается? Мы не будем вдаваться в этот вопрос, поскольку его обсуждение выходит за рамки ЕГЭ по физике.

Формула (1) позволяет найти углы, задающие направления на максимумы:

. (2)

При получаем Это центральный максимум , или максимум нулевого порядка .Разность хода всех вторичных волн, идущих без отклонения, равна нулю, и в центральном максимуме они складываются с нулевым сдвигом фаз. Центральный максимум - это центр дифракционной картины, самый яркий из максимумов. Дифракционная картина на экране симметрична относительно центрального максимума.

При получаем угол:

Этот угол задаёт направления на максимумы первого порядка . Их два, и расположены они симметрично относительно центрального максимума. Яркость в максимумах первого порядка несколько меньше, чем в центральном максимуме.

Аналогично, при имеем угол:

Он задаёт направления на максимумы второго порядка . Их тоже два, и они также расположены симметрично относительно центрального максимума. Яркость в максимумах второго порядка несколько меньше, чем в максимумах первого порядка.

Примерная картина направлений на максимумы первых двух порядков показана на рис. 7 .


Рис. 7. Максимумы первых двух порядков

Вообще, два симметричных максимума k -го порядка определяются углом:

. (3)

При небольших соответствующие углы обычно невелики. Например, при мкм и мкм максимумы первого порядка расположены под углом .Яркость максимумов k -го порядка постепенно убывает с ростом k . Сколько всего максимумов можно увидеть? На этот вопрос легко ответить с помощью формулы (2) . Ведь синус не может быть больше единицы, поэтому:

Используя те же числовые данные, что и выше, получим: . Следовательно, наибольший возможный порядок максимума для данной решётки равен 15.

Посмотрите ещё раз на рис. 5 . На экране мы видны 11 максимумов. Это центральный максимум, а также по два максимума первого, второго, третьего, четвёртого и пятого порядков.

С помощью дифракционной решётки можно измерить неизвестную длину волны. Направляем пучок света на решётку (период которой мы знаем), измеряем угол на максимум первого
порядка, пользуемся формулой (1) и получаем:

Дифракционная решётка как спектральный прибор.

Выше мы рассматривали дифракцию монохроматического света, каковым является лазерный луч. Часто приходится иметь дело с немонохроматическим излучением. Оно является смесью различных монохроматических волн, которые составляют спектр данного излучения. Например, белый свет - это смесь волн всего видимого диапазона, от красного до фиолетового.

Оптический прибор называется спектральным , если он позволяет раскладывать свет на монохроматические компоненты и тем самым исследовать спектральный состав излучения. Простейший спектральный прибор вам хорошо известен - это стеклянная призма. К числу спектральных приборов относится также и дифракционная решётка.

Предположим, что на дифракционную решётку падает белый свет. Давайте вернёмся к формуле (2) и подумаем, какие выводы из неё можно сделать.

Положение центрального максимума () не зависит от длины волны. В центре дифракционной картины сойдутся с нулевой разностью хода все монохроматические составляющие белого света. Поэтому в центральном максимуме мы увидим яркую белую полосу.

А вот положения максимумов порядка определяются длиной волны. Чем меньше , тем меньше угол для данного . Поэтому в максимуме k -го порядка монохроматические волны разделяются в пространстве: самой близкой к к центральному максимуму окажется фиолетовая полоса, самой далёкой - красная.

Следовательно, в каждом порядке белый свет раскладывается решёткой в спектр.
Максимумы первого порядка всех монохроматических компонент образуют спектр первого порядка; затем идут спектры второго, третьего и так далее порядков. Спектр каждого порядка имеет вид цветной полосы, в которой присутствуют все цвета радуги - от фиолетового до красного.

Дифракция белого света показана на рис. 8 . Мы видим белую полосу в центральном максимуме, а по бокам - два спектра первого порядка. По мере возрастания угла отклонения цвет полос меняется от фиолетового к красному.

Но дифракционная решётка не только позволяет наблюдать спектры, т. е. проводить качественный анализ спектрального состава излучения. Важнейшим достоинством дифракционной решётки является возможность количественного анализа - как уже говорилось выше, мы с её помощью можем измерять длины волн. При этом измерительная процедура весьма проста: фактически она сводится к измерению угла направления на максимум.

Естественными примерами дифракционных решёток, встречающихся в природе, являются перья птиц, крылья бабочек, перламутровая поверхность морской раковины. Если, прищурившись, посмотреть на солнечный свет, то можно увидеть радужную окраску вокруг ресниц.Наши ресницы действуют в данном случае как прозрачная дифракционная решётка на рис. 6 , а в качестве линзы выступает оптическая система роговицы и хрусталика.

Спектральное разложение белого света, даваемое дифракционной решёткой, проще всего наблюдать, глядя на обычный компакт-диск (рис. 9 ). Оказывается, дорожки на поверхности диска образуют отражательную дифракционную решётку!


ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.

Дифракция света – явление отклонения света от прямолинейного распространения при встрече с препятствием, когда свет, огибая препятствие, заходит в область его геометрической тени.

Опыт Юнга: В непрозрачном экране на небольшом расстоянии друг от друга имеются два маленьких отверстия S 1 и S 2 . Эти отверстия освещаются узким световым пучком, прошедшим в свою очередь через малое отверстие S в другом экране. Если бы не было явления дифракции, то мы должны были бы увидеть только светлое пятно от отверстия S на втором экране. На самом деле наблюдается устойчивая интерференционная картина на третьем экране (чередующиеся светлые и темные полосы).

Явление дифракции можно объяснить на основе принципа Гюйгенса-Френеля .

Согласно Гюйгенсу , все точки поверхности, которой достигла в данный момент волна, являются центрами вторичных сферических волн. При этом в однородной среде вторичные волны излучаются только вперед.

Согласно Френелю , волновая поверхность в любой момент времени представляет собой результат интерференции когерентных вторичных волн.

Объяснение опыта Юнга

Возникшая в соответствии с принципом Гюйгенса-Френеля сферическая волна от отверстия S возбуждает в отверстиях S 1 и S 2 когерентные колебания. Вследствие дифракции из отверстий S 1 и S 2 выходят два световых конуса, которые частично перекрываются и интерферируют. В результате интерференции световых волн на экране появляются чередующиеся светлые и темные полосы. При закрывании одного из отверстий интерференционные полосы исчезают.

Дифракция обнаруживается в непосредственной близости от препятствия только в том случае, когда размеры препятствия соизмеримы с длиной волны (для видимого света λ ~ 100 нм).

Дифракция света на одномерной дифракционной решетке.

Дифракционная решетка – оптическое устройство, представляющее собой совокупность большого числа параллельных, равноотстоящих друг от друга щелей одинаковой ширины. Число штрихов может доходить до 2000-3000 тысяч на 1 мм. Прозрачные дифракционные решетки изготавливают из прозрачного твердого вещества, например, плоскопараллельных стеклянных или кварцевых пластинок. Алмазным резцом наносят штрихи. Там, где прошелся резец, образуется непрозрачная поверхность, рассеивающая свет. Промежутки между штрихами играют роль щелей. Отражательные дифракционные решетки представляют собой зеркальную (металлическую) поверхность, на которую нанесены параллельные штрихи. Световая волна рассеивается штрихами на отдельные когерентные пучки, которые, претерпев дифракцию, на штрихах, интерферируют. Результирующая интерференционная картина образуется в отраженном свете.

Если ширина прозрачных щелей (или отражательных полос) равна а , а ширина непрозрачных промежутков (или рассеивающих свет полос) b , то величина называется периодом или постоянной дифракционной решетки .

Рассмотрим дифракцию на прозрачной дифракционной решетке. Пусть на решетку падает плоская монохроматическая волна длиной l. Для наблюдения дифракции на близком расстоянии за решеткой помещают собирающую линзу и за ней экран на фокусном расстоянии от линзы. В каждой точке фокальной плоскости линзы происходит интерференция N волн, приходящих в эту точку от N щелей решетки. Это так называемая многоволновая или многолучевая интерференция. Выберем некоторое направление вторичных волн под углом φ относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода. Такая же разность хода будет для вторичных волн, идущих от других пар точек соседних щелей, отстоящих на расстояние d друг от друга. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы :

основная формула дифракционной решетки ,

где k = 0, 1, 2… - порядок главных максимумов. На экране наблюдаются узкие одноцветные линии (в зависимости от цвета падающей волны). Линия под углом φ = 0 называется спектральной линией первого порядка (k = 0) по обе стороны от нее симметрично расположены спектральные линии первого порядка (k = 1, k = -1), второго порядка (k = 2, k = -2) и т.д. Интенсивность этих линий в N 2 раз больше интенсивности, создаваемой в направлении φ одной щелью. С ростом k спектральные линии становятся менее яркими и перестают наблюдаться вовсе. Максимально наблюдаемое число линий ограничивается по следующим причинам. Во-первых, с ростом угла φ уменьшается интенсивность света, испускаемого отдельной щелью. Во-вторых, даже очень узкие щели с шириной близкой к λ , не могут отклонять свет под углом большим, чем. Поэтому, . Увеличение числа щелей не меняет положения главных максимумов, но делает их более интенсивными. При наклонном падении света под углом , условие главных максимумов имеет вид: .

Между главными максимумами появляются добавочные минимумы , число которых равно N – 1, где N – общее число щелей решетки. (На рис. слева для N = 8 и N = 16 нарисованы не все добавочные минимумы). Они появляются за счет взаимной компенсации волн от всех N щелей. Чтобы N волн погасили друг друга, разность фаз должна отличаться на. А оптическая разность хода, соответственно, должна быть равна. Направления добавочных минимумов определяются условием, где k принимает целочисленные значения кроме 0, N , 2N , 3N ,…, то есть тех, при которых данное условие переходит в основную формулу дифракционной решетки.

Между добавочными минимумами находится N – 2 добавочных максимумов , интенсивность которых очень слаба.

При нормальном освещении решетки белым светом на экране наблюдается белый центральный максимум нулевого порядка, а по обе стороны от него – дифракционные спектры 1-го, 2-го и т.д. порядков. Спектры имеют вид радужных полосок, в которых наблюдается непрерывный переход от фиолетового цвета у внутреннего края спектра к красному цвету у внешнего края.

Со спектров 2-го и 3-го порядков начинается их частичное перекрывание (т.к. выполняется условие).

Спектроскопическими характеристиками решетки являются: разрешающая способность и угловая дисперсия.

Разрешающая способность дифракционной решетки – безразмерная величина, где  - минимальная разность волн двух спектральных линий, при которой эти линии воспринимаются раздельно, λ – среднее значение длин волн этих линий. Можно доказать, что, где L – ширина дифракционной решетки.

Угловая дисперсия характеризует степень пространственного (углового) разделения световых лучей с разной длиной волны: , где φ – угловое расстояние между спектральными линиями, отличающимися по длине волны на . Несложно доказать, что.

Таким образом, решетка является спектральным устройством, который можно использовать в различных оптических приборах, например, в дифракционных спектрофотометрах, в качестве монохроматоров, т.е. устройств, позволяющих освещать объект светом в узком диапазоне длин волн.

Дифракционная решетка может быть использована для определения длины волны света (по основной формуле дифракционной решетки). С другой стороны, основная формула дифракционной решетки может быть использована для решения обратной задачи – нахождения постоянной дифракционной решетки по длине волны. Этот способ лег в основу рентгеноструктурного анализа – измерения параметров кристаллической решетки посредством дифракции рентгеновских лучей. В настоящее время широко используют рентгеноструктурный анализ биологических молекул и систем. Именно этим методом Дж. Уотсон и Ф. Крик установили структуру молекулы ДНК (двойная спираль) и были удостоены в 1962 г. Нобелевской премии.

явление дисперсии при пропускании белого света через призму (рис. 102). При выходе из призмы белый свет разлагается на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Меньше всех отклоняется красный свет, больше - фиолетовый. Это говорит о том, что стекло имеет для фиолетового света наибольший показатель преломления, а для красного - наименьший. Свет с разными длинами волн распространяется в среде с разными скоростями: фиолетовый с наименьшей, красный - наибольшей, так как n= c/v ,

В результате прохождения света через прозрачную призму получается упорядоченное расположение монохроматических электромагнитных волн оптического диапазона - спектр.

Все спектры делятся на спектры испускания и спектры поглощения. Спектр испускания создается светящимися телами. Если на пути лучей, падающих на призму, поместить холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии.

Свет

Свет – это поперечные волны

Электромагнитная волна представляет собой распространение переменного электромагнитного поля, причем напряженности электрического и магнитного полей перпендикулярны друг к другу и к линии распространения волны: электромагнитные волны поперечны.

Поляризованный свет

Поляризованным называется свет, в котором направления колебаний светового вектора упорядочены каким-либо образом.

Свет падает из среды с большим показ. Преломления в среду с меньшим

Способы получения линейного поляризованного света

Двоякопреломляющие кристаллы применяют для получения линейно-поляризованного света двумя способами. В первом используют кристаллы, не обладающие дихроизмом; из них изготавливают призмы, составленные из двух треугольных призм с одинаковой или перпендикулярной ориентацией оптических осей. В них либо один луч отклоняется в сторону, так что из призмы выходит только один линейно-поляризованный луч, либо выходят оба луча, но разведённые на большой угол. Во втором способе используются сильнодихроичные кристаллы, в которых один из лучей поглощается, или тонкие плёнки - поляроиды в виде листов большой площади.



Закон Брюстера

Закон Брюстера - закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.

Закон Брюстера: , где n21 - показатель преломления второй среды относительно первой, θBr - угол падения (угол Брюстера)

Закон отражения света

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча

Законы отражения света представляют собой два утверждения:

1. Угол падения равен углу отражения.

2. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения луча, лежат в одной плоскости.

Закон преломления

При переходе света из одной прозрачной среды в другую изменяется направление его распространения. Это явление и носит название преломления. Закон преломления света определяет взаимное расположение падающего луча, преломленного и перпендикуляра к поверхности раздела двух сред.

Закон преломления света определяет взаимное расположение падающего луча АВ (рис. 6), преломленного DB и перпендикуляра СЕ к поверхности раздела сред, восставленного в точке падения. Угол a называется углом падения, а угол b - углом преломления.

Поделитесь с друзьями или сохраните для себя:

Загрузка...