Структурно механический фактор устойчивости заключается в. Московский государственный университет печати. их устойчивость и коагуляция

термодинамические кинетические

(↓ ).(↓скорости коагуляции из-за гидродинамических свойств среды)

а) электростатический фактор – ↓ из-за а) гидродинамический фактор

образования ДЭС

б) адсорбционно-сольватный фактор - ↓ б)структурно- механический

из-за адсорбции и сольватации поверхности фактор

в) энтропийный фактор

Термодинамические факторы:

Электростатический фактор способствует созданию электростатических сил отталкивания, возрастающих при увеличении поверхностного потенциала частиц, и особенно ζ- потенциала.

Адсорбционно-сольватный фактор обусловлен уменьшением в результате сольватации поверхности частиц. Поверхность частиц при этом лифильна по своей природе или из-за адсорбции стабилизаторов-неэлектролитов. Такие системы могут быть агрегативно устойчивыми даже при отсутствии потенциала на поверхности частиц.

Лиофилизовать лиофобные системы можно, адсорбировав на их поверхности молекулы, с которыми их среда взаимодействует. Это ПАВ, ВМС, и в случае эмульсий – тонкодисперсные порошки, смачиваемые средой.

Адсорбция таких веществ сопровождается сольватацией и ориентацией молекул в согласии с полярностью контактирующих фаз (правило Ребиндера). Адсорбция ПАВ приводит к снижению поверхностной энергии Гиббса и тем самым - к повышению термодинамической устойчивости системы

Энтропийный фактор особую роль играет в системах с частицами малых размеров, так как вследствие броуновского движения частицы дисперсной фазы равномерно распределяются по объёму системы. В результате повышается хаотичность системы (хаотичность её меньше, если частицы находятся в виде осадка на дне сосуда), как следствие, возрастает и её энтропия. Это приводит к увеличению термодинамической устойчивости системы, достигаемой за счёт снижения общей энергии Гиббса. Действительно, если в ходе какого-либо процесса S > 0, то согласно уравнению

G = H - TS,

такой процесс идет с уменьшением энергии Гиббса G <0.

Кинетические факторы:

Структурно-механический фактор устойчивости возникает при адсорбции ПАВ и ВМС на поверхности частиц, которые приводят к образованию адсорбционных слоев, обладающих повышенными структурно-механическими свойствами. К таким веществам относятся: длинноцепочечные ПАВ, большинство ВМС, например, желатин, казеин, белки, мыла, смолы. Концентрируясь на поверхности частиц, они могут образовывать гелеобразную пленку.Эти адсорбционные слои являются как бы барьером на пути сближения частиц и их агрегации.

Одновременное снижение поверхностного натяжения в этом случае приводит к тому, что этот фактор становится универсальным для стабилизации всех дисперсных систем.

Гидродинамический фактор устойчивости проявляется в сильновязких и плотных дисперсионных средах, в которых скорость движения частиц дисперсной фазы мала и их кинетической энергии недостаточно, чтобы преодолеть даже малый потенциальный барьер отталкивания.

В реальных коллоидных системах обычно действует сразу несколько термодинамических и кинетических факторов устойчивости. Например, устойчивость мицелл полистирольного латекса (см. главу 5) обеспечивается ионным, структурно-механическим и адсорбционно-сольватным факторами устойчивости.

Следует отметить, что каждому фактору устойчивости соответствует свой специфический метод его нейтрализации. Например, действие ионного фактора значительно снижается при введении электролитов. Действие структурно-механического фактора можно предотвратить с помощью веществ – т.н. деэмульгаторов (это – обычно короткоцепочечные ПАВ), разжижающих упругие структурированные слои на поверхности частиц, а также механическим, термическим и другими способами. В результате происходит потеря агрегативной устойчивости систем и коагуляция .

Механизмы действия стабилизаторов

Стабилизаторы создают на пути слипания частиц потенциальный или структурно-механический барьер и при его достаточной высоте термодинамически неустойчивая система может существовать достаточно долго по чисто кинетическим причинам, находясь в метастабильном состоянии.

Рассмотрим более подробно электростатический фактор устойчивости или ионный фактор стабилизации дисперсных систем.

Различают термодинамические и кинетические факторы устойчивости,

К термодинамическим факторам относятся электростатический, адсорбционно-соль­ват­ный и энтропийный факторы.

Электростатический фактор обусловлен существованием на поверхности частиц дисперсной фазы двойного электрического слоя. Главные составляющие электростатического фактора - это одноимённый заряд гранул всех коллоидных частиц, значение электрокинетического потенциала, а также уменьшение межфазного поверхностного натяжения вследствие адсорбции электролитов (особенно в тех случаях, когда электролитами являются ионогенные ПАВ).

Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.

Адсорбционно-сольватный фактор связан с гидратацией (сольватацией) как самих частиц дисперсной фазы, так и адсорбированных на их поверхности ионов или незаряженных молекул ПАВ. Гидратные оболочки и адсорбционные слои связаны с поверхностью частиц силами адгезии. Поэтому для непосредственного соприкосновения агрегатов сталкивающиеся частицы должны обладать энергией, необходимой не только для преодоления электростатического барьера, но и превышающей работу адгезии.

Энтропийный фактор заключается в стремлении дисперсной фазы к равномерному распределению частиц дисперсной фазы по объёму системы в результате диффузии. Этот фактор проявляется, главным образом, в ультрамикрогетерогенных системах, частицы которых участвуют в интенсивном броуновском движении.

К кинетическим факторам устойчивости относятся структурно-механи­ческий и гидродинамический факторы.

Структурно-механический фактор связан с тем, что существующие на поверхности частиц гидратные (сольватные) оболочки обладают повышенной вязкостью и упругостью. Это создаёт дополнительное отталкивающее усилие при столкновении частиц – так называемое расклинивающее давление . В расклинивающее давление вносит вклад также и упругость самих адсорбционных слоёв. Учение о расклинивающем давлении было разработано Б. В. Дерягиным (1935).



Гидродинамический фактор связан с вязкостью дисперсионной среды. Он снижает скорость разрушения системы благодаря замедлению движения частиц в среде с большой вязкостью. Наименее выражен этот фактор в системах с газовой средой, а наибольшее его проявление наблюдается в системах с твёрдой средой, где частицы дисперсной фазы вообще лишены подвижности.

В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.

Как указывалось в § 106, качественная особенность дисперсных систем состоит в их агрегативной неустойчивости.

Предотвращение агрегации первичных дисперсных частиц возможно в результате действия трех факторов устойчивости дисперсных систем: 1) кинетического, 2) электрического и 3) структурно-механического.

Необходимым условием слипания двух частиц дисперсной фазы является их сближение, достаточное для проявления сил притяжения. Если частота столкновений коллоидных частиц мала, то дисперсная система может быть устойчивой (кинетический фактор устойчивости). Это может иметь место при очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды (например, в дисперсных системах типа ).

Рис. 102. Схема перекрывания ионных атмосфер двух коллоидных частиц.

Большинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды содержат еще компонент, являющийся стабилизатором дисперсности. Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (стр. 324),

Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. Такая стабилизация имеет основное значение для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидролизе все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном сближении, когда происходит перекрывание их ионных атмосфер (рис. 102). Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние между ними и чем больше толщина двойного электрического слоя.

Кроме электростатического отталкивания между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы. Действующие между отдельными молекулами дисперсионные силы быстро убывают с увеличением расстояния между ними. Но взаимодействие коллоидных частиц обусловлено суммированием дисперсионных сил притяжения между всеми молекулами, находящимися на поверхности контакта коллоидных частиц. Поэтому силы притяжения между коллоидными частицами убывают медленнее и проявляются на больших расстояниях, чем в случае отдельных молекул.

Потенциальная энергия взаимодействия (U) между коллоидными частицами представляет собой алгебраическую сумму потенциальной энергии электростатического отталкивания и потенциальной энергии дисперсионного притяжения между ними:

Если (по абсолютной величине), то отталкивание преобладает над притяжением и дисперсная система устойчива.

Рис. 103. Потенциальная энергия взаимодействия между двумя одинаково заряженными частицами: 1 - электрическое отталкивание 2 - дисперсионное притяжение ; 3 - результирующая энергия взаимодействия ; 4 - то же, но при более крутом падении кривой ; х - расстояние между частицами; - потенциальный барьер взаимодействия дисперсных частиц.

Если , то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в более крупные агрегаты и седиментация последних. Коллоидный раствор коагулирует, т. е. разделяется на коагулят (осадок) и дисперсионную среду.

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем, развитой впервые Б. В. Дерягиным , а затем Л. Д. Ландау и голландскими учеными Фервеем и Овербеком (1948 г.); по первым буквам фамилий авторов ее называют теорией ДЛФО.

На рис. 103 приведены зависимости величин и от расстояния между коллоидными частицами. При этом, как принято в физике, потенциальной энергии притяжения приписывается знак минус, а отталкивания - знак плюс. Как видно, результирующая энергия взаимодействия (кривая 3 на рис. 103) приводит к притяжению на очень малых и отталкиванию на больших расстояниях между частицами. Решающее значение для устойчивости дисперсных систем имеет величина потенциального барьера отталкивания , которая, в свою очередь, зависит от хода кривых и . При больших значениях этого барьера коллоидная система устойчива. Слипание коллоидных частиц возможно лишь при достаточном их сближении. Это требует преодоления потенциального барьера отталкивания. При некоторых небольших положительных значениях (кривая 3) преодолеть его могут лишь немногие коллоидные частицы с достаточно кинетической энергией. Это соответствует стадии медленной коагуляции, когда только небольшая часть соударений коллоидных частиц приводит к их слипанию. При медленной коагуляции со временем происходит некоторое уменьшение общего числа коллоидных частиц в результате образования агрегатов из первичных частиц, но коагулят не выпадает. Подобную коагуляций, не сопровождающуюся видимым изменением коллоидного раствора, называют скрытой коагуляцией.

При дальнейшем уменьшении потенциального барьера скорость коагуляции, характеризуемая изменением числа частиц в единицу времени, возрастает. Наконец, если потенциальный барьер переходит из области отталкивания в область притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция, когда каждое соударение коллоидных частиц приводит к их слипанию; в коллоидном растворе образуется осадок - коагулят, происходит явная коагуляция.

Потенциальный барьер отталкивания возникает в результате суммирования сил отталкивания и притяжения, действующих между коллоидными частицами. Поэтому все факторы, влияющие на ход кривых 1 и 2 (рис. 103), приводят к изменению как величины , так и положения максимума (т. е. расстояния X, соответствующего ).

Значительное уменьшение происходит в результате изменения потенциальной энергии электростатического отталкивания (т. е. хода кривой 1), вызванного добавлением электролитов к коллоидному раствору. С увеличением концентрации любого электролита происходит перестройка двойного электрического слоя, окружающего коллоидные частицы: все большая часть противо-ионов вытесняется из диффузной в адсорбционную часть двойного Электрического слоя. Толщина диффузной части двойного электрического слоя (слой 4 на рис. 100), а вместе с ней и всего двойного электрического слоя (слой 2 на рис. 100) уменьшается. Поэтому кривая потенциальной энергии электростатического отталкивания снижается более круто, чем показанная на рис. 103 кривая 1. В результате этого потенциальный барьер отталкивания уменьшается и смещается в сторону меньшего расстояния между коллоидными частицами. Когда двойной электрический слой сжимается до толщины адсорбционного слоя (слой 8 на рис. 100), то вся кривая взаимодействия дисперсных частиц оказывается в области притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция. Такое изменение устойчивости коллоидного раствора происходит при добавлении любого электролита.

Коагулирующее действие электролитов характеризуют порогом коагуляции, т. е. наименьшей концентрацией электролита, вызывающей коагуляцию. В зависимости от природы электролита и коллоидного раствора порог коагуляции изменяется в пределах от до 0,1 моль в литре золя. Наиболее существенное влияние на порог коагуляции оказывает заряд коагулирующего иона электролита, т. е. иона, заряд которого противоположен по знаку заряду коллоидной частицы.

Многозарядные противоионы электролита имеют повышенную адсорбционную способность по сравнению с однозарядными и проникают в адсорбционную часть двойного электрического слоя в больших количествах. При этом порог коагуляции уменьшается не пропорционально заряду противоиона, а значительно быстрее.

Блестящим подтверждением теории ДЛФО явился расчет Б. В. Дерягиным и Л. Д. Ландау (1941 г.) соотношения значений порогов коагуляции вызываемой электролитами, содержащими ионы с разной величиной заряда. Оказалось, что порог коагуляции обратно пропорционален шестой степени заряда коагулирующего иона. Следовательно, значения порогов коагуляции для одно-, двух-, трех- и четырехзарядных ионов должны относиться, как

что близко к соотношениям концентраций электролитов, которые наблюдались при коагуляции разнообразных гидрозолей. Сказанное иллюстрируют данные табл. 22, где приведены эквивалентные концентрации электролитов , вызывающие коагуляцию гидрозоля оксида .

Таблица 22. Пороги коагуляции отрицательно заряженного золя электролитами

Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению.

Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде.

Однако стабилизация дисперсных систем значительно более эффективна при добавлений к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводиых, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах - мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами.

Различают термодинамические и кинетические факторы устойчивости,

К термодинамическим факторам относятся электростатический, адсорбционно-соль­ват­ный и энтропийный факторы.

Электростатический фактор обусловлен существованием на поверхности частиц дисперсной фазы двойного электрического слоя. Главные составляющие электростатического фактора - это одноимённый заряд гранул всех коллоидных частиц, значение электрокинетического потенциала, а также уменьшение межфазного поверхностного натяжения вследствие адсорбции электролитов (особенно в тех случаях, когда электролитами являются ионогенные ПАВ).

Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.

Адсорбционно-сольватный фактор связан с гидратацией (сольватацией) как самих частиц дисперсной фазы, так и адсорбированных на их поверхности ионов или незаряженных молекул ПАВ. Гидратные оболочки и адсорбционные слои связаны с поверхностью частиц силами адгезии. Поэтому для непосредственного соприкосновения агрегатов сталкивающиеся частицы должны обладать энергией, необходимой не только для преодоления электростатического барьера, но и превышающей работу адгезии.

Энтропийный фактор заключается в стремлении дисперсной фазы к равномерному распределению частиц дисперсной фазы по объёму системы в результате диффузии. Этот фактор проявляется, главным образом, в ультрамикрогетерогенных системах, частицы которых участвуют в интенсивном броуновском движении.

К кинетическим факторам устойчивости относятся структурно-механи­ческий и гидродинамический факторы.

Структурно-механический фактор связан с тем, что существующие на поверхности частиц гидратные (сольватные) оболочки обладают повышенной вязкостью и упругостью. Это создаёт дополнительное отталкивающее усилие при столкновении частиц – так называемое расклинивающее давление . В расклинивающее давление вносит вклад также и упругость самих адсорбционных слоёв. Учение о расклинивающем давлении было разработано Б. В. Дерягиным (1935).



Гидродинамический фактор связан с вязкостью дисперсионной среды. Он снижает скорость разрушения системы благодаря замедлению движения частиц в среде с большой вязкостью. Наименее выражен этот фактор в системах с газовой средой, а наибольшее его проявление наблюдается в системах с твёрдой средой, где частицы дисперсной фазы вообще лишены подвижности.

В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.

Коагуляция

Как уже говорилось выше, в основе коагуляции лежит нарушение агрегативной устойчивости системы, приводящее к слипанию частиц дисперсной фазы при их столкновениях. Внешне коагуляция коллоидных растворов проявляется в виде помутнения, иногда сопровождающегося изменением цвета, с последующим выпадением осадка.



В образующихся при коагуляции агрегатах первичные частицы связаны друг с другом или через прослойку дисперсионной среды, или непосредственно. В зависимости от этого агрегаты могут быть или рыхлыми, легко подающимися пептизации, или достаточно прочными, часто необратимыми, которые пептизируются с трудом или вообще не пептизируются. В системах с жидкой дисперсионной средой, особенно при большой концентрации частиц дисперсной фазы, выпадение образующихся агрегатов в осадок часто сопровождается структурообразованием – образованием коагеля или геля, охватывающего весь объём системы.

Первой стадией коагуляции золя при нарушении его устойчивости является скрытая коагуляция , которая заключается в объединении лишь незначительного числа частиц. Скрытая коагуляция обычно не фиксируется невооружённым глазом и может быть отмечена лишь при специальном исследовании, например, с помощью ультрамикроскопа. Вслед за скрытой коагуляцией наступает явная , когда объединяется уже настолько значительное количество частиц, что это приводит к хорошо заметным изменению цвета, помутнению золя и выпадению из него рыхлого осадка (коагулята ). Возникающие в результате потери агрегативной устойчивости коагуляты представляют собой оседающие (или всплывающие) образования различной структуры - плотные, творожистые, хлопьевидные, волокнистые, кристаллоподобные. Структура и прочность коагулятов в значительной степени определяется степенью сольватации (гидратации) и присутствием на частицах адсорбированных веществ различной природы, в том числе ПАВ.

П. А. Ребиндером было подробно изучено поведение золей при коагуляции с не полностью снятыми защитными факторами и показано, что в таких случаях наблюдается коагуляционное структурообразование, приводящие к появлению гелеобразных систем (строение которых будет рассмотрено в главе 11).

Процесс, обратный коагуляции, называется пептизацией(см. п. 4.2.3). В ультрамикрогетерогенных системах, в которых энергия броуновского движения соизмерима с энергией связи частиц в агрегатах (флокулах), между коагуляцией и пептизацией может устанавливаться динамическое равновесие. Оно должно отвечать условию

½ zE = kT ln (V з /V к),

где z – координационное число частицы в пространственной структуре коагулята (иначе, - число контактов одной частицы в образующемся агрегате с другими частицами, входящими в него), E – энергия связи между частицами, находящимися в контакте, k – константа Больцмана, T – абсолютная температура, V з – объём, приходящийся на одну частицу в коллоидном растворе, после образования коагулята (если концентрация частиц при этом равна n частиц/м 3 , то V з = 1/n ,), V к – эффективный объём, приходящийся на одну частицу внутри коагуляционной структуры (или объём, в котором она колеблется относительно положения равновесия).

В лиофобных дисперсных системах после коагуляции концентрация частиц в равновесном золе обычно пренебрежимо мала по сравнению с их концентрацией. Поэтому в соответствии с вышеприведённым уравнением коагуляция является, как правило, необратимой. В лиофильных системах значения энергии связи между частицами невелики и поэтому

½ zE < kT ln (V з /V к),

то есть коагуляция или невозможна, или в высокой степени обратима.

Причины, вызывающие коагуляцию, могут быть самыми различными. Это и механические воздействия (перемешивание, вибрация, встряхивание), и температурные (нагревание, кипячение, охлаждение, замораживание), и другие, часто трудно объяснимые и непредсказуемые.

Но наиболее важной в практическом отношении и вместе с тем наиболее хорошо изученной является коагуляция под действием электролитов или электролитная коагуляция.

§8. Агрегативная устойчивость дисперсных систем

В данном разделе обсуждаются явления и процессы, обусловленные агрегативной устойчивостью дисперсных систем.

Прежде всего отметим, что все дисперсные системы в зависимости от механизма процесса их образования по классификации П.А.Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроиз­вольное образование гетерогенной свободнодисперсной системы), и лиофобные, получающиеся в результате диспергирования и конденсации (принудительное образование гетерогенной свободнодисперсной системы).

Лиофобные системы по определению должны обладать избытком поверхностной энергии, если она не скомпенсирована введением стабилизаторов. Поэтому в них самопроизвольно идут процессы укрупнения частиц, т. е. происходит снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы называют агрегативно неустойчивыми.

Укрупнение частиц может идти разными путями. Один из них, называемый изотермической перегонкой , заключается в переносе вещества от мелких частиц к крупным (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные – растут.

Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию (от лат, свертывание, затвердение), заключающуюся в слипании частиц.

Коагуляция в разбавленных системах также приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз.

Процесс слияния частиц получилназвание коалесценции .

В концентрированных системах коагуляция может проявляться в образовании объёмной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения этого процесса. Укрупнение частиц ведёт, например, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, возрастает её вязкость, замедляется течение.

Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объёму, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остается прослойка среды.

Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля (структурированной дисперсной системы) называется пептизацией.

Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твёрдых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объёмные твердообразные структуры, которые снова можно превратить в свободнодисперсную систему только с помощью принудительного диспергирования. Таким образом, понятие коагуляции включает в себя несколько процессов, идущих с уменьшением удельной поверхности системы.

Рис.33. Процессы, вызывающие потерю устойчивости дисперсных систем.

Агрегативная устойчивость нестабилизированных лиофобных дисперсных систем носит кинетический характер, и судить о ней можно по скорости процессов, вызываемых избытком поверхностной энергии.

Скорость коагуляции определяет агрегативную устойчивость дисперсной системы, для которой характерен процесс слипания (слияния) частиц.

Агрегативная устойчивость может носить и термодинамический характер, если дисперсная система не обладает избытком поверхностной энергии. Лиофильные системы термодинамически агрегативно устойчивы, они образуются самопроизвольно и для них процесс коагуляции вообще не характерен.

Лиофобные стабилизированные системы термодинамически устойчивы к коагуляции; они могут быть выведены из такого состояния с помощью воздействий, приводящих к избытку поверхностной энергии (нарушение стабилизации).

В соответствии с вышеизложенной классификацией различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Так как движущей силой коагуляции является избыточная поверхностная энергия, то основными факторами, обеспечивающими устойчивость дисперсных систем (при сохранении площади поверхности), будут те, которые снижают поверхностное натяжение. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений между частицами, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем ближе система к термодинамически устойчивой.

Скорость коагуляции, кроме того, зависит и от кинетических факторов.

Кинетические факторы, снижающие скорость коагуляции, связаны в основном с гидродинамическими свойствами среды: с замедлением сближения частиц, вытекания и разрушения прослоек среды между ними.

Различают следующие термодинамические и кинетические факторы устойчивости дисперсных систем:

1.Электростатический фактор заключается в уменьшении межфазного натяжения вследствие формирования двойного электрического слоя на поверхности частиц, а также в кулоновском отталкивании, возникающем при их сближении.

Двойной электрический слой (ДЭС) образуется при адсорбции ионогенных (диссоциирующих на ионы) ПАВ. Адсорбция ионогенного ПАВ может происходить на границе двух несмешивающихся жидкостей, например воды и бензола. Полярная группа молекулы ПАВ, обращенная к воде, диссоциирует, сообщая поверхности бензольной фазы заряд, соответствующий органической части молекул ПАВ (потенциалопределяющих ионов). Противоионы (неорганические ионы) формируют двойной слой со стороны водной фазы, так как сильнее с ней взаимодействуют.

Существуют и другие механизмы образования двойного электрического слоя. Например, ДЭС образуется на межфазной поверхности между водой и малорастворимым иодидом серебра. Если в воду добавить хорошо растворимый нитрат серебра, то образующиеся в результате диссоциации ионы серебра могут достраивать кристаллическую решетку AgI, т. к. они входят в её состав (специфическая адсорбция ионов серебра). Вследствие этого поверхность соли заряжается положительно (избыток катионов серебра), а йодид-ионы будут выступать в качестве противоионов.

Следует также упомянуть о возможности образования двойного электрического слоя в результате перехода ионов или электронов из одной фазы в другую (поверхностная ионизация).

ДЭС, образующийся в результате описанных выше процессов пространственного разделения зарядов, имеет размытый (диффузный) характер, что обусловлено одновременным влиянием на его строение электростатического (кулоновского) и ван-дер-ваальсовского взаимодействия, а также теплового движения ионов и молекул.

Так называемые электрокинетические явления (электрофорез, электроосмос и др.) обусловлены наличием двойного электрического слоя на границе раздела фаз.

2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного

натяжения при введении поверхностно-активных веществ (благодаря адсорбции и сольватации).

3. Энтропийный фактор, как и первые два, относится к термодинамическим. Он дополняет первые два фактора и действует в системах, в которых частицы участвуют в тепловом движении. Энтропийное отталкивание частиц можно представить как наличие постоянной диффузии частиц из области с большей концентрацией в область с меньшей концентрацией, т. е. система постоянно стремится к выравниванию по всему объёму концентрации дисперсной фазы.

4. Структурно-механический фактор является кинетическим. Его действие обусловлено тем, что на поверхности частиц могут образовываться плёнки, обладающие упругостью и механической прочностью, разрушение которых требует затрат энергии и времени.

5. Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости и плотности дисперсионной среды в тонких прослойках жидкости между частицами дисперсной фазы.

Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совместном действии термодинамических и кинетических факторов.

Структурно-механический барьер, рассмотренный впервые П.А.Ребиндером, – это сильный фактор стабилизации, связанный с образованием на границах раздела фаз адсорбционных слоёв, лиофилизующих поверхность. Структура и механические свойства таких слоёв способны обеспечить весьма высокую устойчивость прослоек дисперсионной среды между частицами дисперсной фазы.

Структурно-механический барьер возникает при адсорбции молекул ПАВ, которые способны к образованию гелеобразного структурированного слоя на межфазной границе, хотя, возможно, и не обладают высокой поверхностной активностью по отношению к данной границе раздела фаз. К таким веществам относятся смолы, производные целлюлозы, белки и другие так называемые защитные коллоиды, являющиеся высокомолекулярными веществами.

§9. Стабилизация и разрушение эмульсий

Рассмотрим особенности стабилизации и разрушения дисперсных систем на примере эмульсий.

Дисперсные системы с жидкой дисперсной фазой и жидкой дисперсионной средой называются эмульсиями.

Их специфической чертой является возможность образования эмульсий двух типов: прямой , в которой дисперсионной средой является более полярная жидкость (обычно вода) и обратной , в которой более полярная жидкость образует дисперсную фазу.

При определенных условиях наблюдается обращение фаз эмульсий , когда эмульсия данного типа при введении каких-либо реагентов или при изменении условий превращается в эмульсию противоположного типа.

Важнейший представитель эмульсий – водонефтяная эмульсия, очень сильно стабилизированная природными ПАВ и смолами. Разрушение таких систем является первой и достаточно трудной стадией подготовки и переработки нефти.

Агрегативная устойчивость эмульсий может обусловливаться многими факторами устойчивости.

Их образование возможно путем самопроизвольного диспергирования при определенных условиях, когда межфазное натяжение настолько мало (менее 10 2 10 1 мДж/м 2 ), что оно полностью компенсируется энтропийным фактором. Это оказывается возможным при температурах, близких к так называемой критической температуре смешения. Кроме того, свойством снижать межфазное натяжение до сверхнизких значений обладают коллоидные ПАВ и растворы ВМС, что позволяет получать термодинамически устойчивые (самопроизвольно образующиеся) эмульсии и при обычных условиях.

В термодинамически устойчивых и самопроизвольно образующихся (лиофильных) эмульсиях частицы имеют очень высокую дисперсность.

Большинство же эмульсий являются микрогетерогенными, термодинамическими неустойчивыми (лиофобными) системами. При длительном хранении в них происходит слипание (коагуляция), а затем и слияние капель (коалесценция).

Агрегативная устойчивость эмульсий количественно характеризуется скоростью их расслоения. Её определяют, измеряя высоту (объём) отслоившейся фазы через определенные промежутки времени после получения эмульсии. Без эмульгатора устойчивость эмульсий обычно небольшая. Известны методы стабилизации эмульсий с помощью ПАВ, ВМС, порошков. Стабилизация эмульсий с помощью ПАВ обеспечи­вается вследствие адсорбции и определенной ориентации молекул ПАВ, что вызывает снижение поверхностного натяжения.

Ориентирование ПАВ в эмульсиях следует правилу уравнивания полярностей Ребиндера: полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы – к неполярной фазе. В зависимости от типа ПАВ (ионогенные, неионогенные) капельки эмульсии приобретают соответствующий заряд или на их поверхности возникают адсорбционно-сольватные слои.

Если ПАВ лучше растворяется в воде, чем в масле (масло – общее название неполярной фазы в эмульсиях), образуется прямая эмульсия м/в, если растворимость его лучше в масле, то получается обратная эмульсия в/м (правило Банкрофта). Замена эмульгатора может привести к обращению эмульсии. Так, если к эмульсии м/в, стабилизированной натриевым мылом, добавить раствор хлорида кальция, то эмульгатор переходит в кальциевую форму и эмульсия обращается, т. е. масляная фаза становится дисперсионной средой. Это объясняется тем, что кальциевое мыло значительно лучше растворимо в масле, чем в воде.

Стабилизация обратных эмульсий с помощью ПАВ не ограничивается факторами, обусловленными уменьшением поверхностного натяжения. ПАВ, особенно с длинными радикалами, на поверхности капелек эмульсии могут образовать плёнки значительной вязкости (структурно-механический фактор), а также обеспечить энтропийное оттал­кивание. Структурно-механический и энтропийный факторы особенно существенны, если для стабилизации применяют поверхностно-активные высокомолекулярные соединения. Структурно-механический фактор – образование структурированной и предельно сольватированной дисперсионной средой адсорбционной плёнки имеет большое значение для стабилизации концентрированных и высококонцентрированных эмульсий. Тонкие структурированные прослойки между каплями высококонцентрированной эмульсии придают системе ярко выраженные твердообразные свойства.

Стабилизация эмульсий возможна и с помощью высокодисперсных порошков. Механизм их действия аналогичен механизму действия ПАВ. Порошки с достаточно гидрофильной поверхностью (глина, кремнезем и др.) стабилизируют прямые эмульсии. Гидрофобные порошки (сажа, гидрофобизированный аэросил и др.) способны к стабилизации обратных эмульсий. Частицы порошка на поверхности капель эмульсий располагаются так, что большая часть их поверхности находится в дисперсионной среде. Для обеспечения устойчивости эмульсии необходимо плотное покрытие порошком поверхности капли. Если степень смачивания частиц порошка-стабилизатора средой и дисперсной фазой сильно различается, то весь порошок будет находиться в объёме фазы, которая его хорошо смачивает, и стабилизирующего действия он очевидно оказывать не будет.

Разрушить прямую эмульсию, стабилизированную ионогенными эмульгаторами, можно добавлением электролитов с поливалентными ионами. Такие электролиты вызывают не только сжатие двойного электрического слоя, но и переводят эмульгатор в малорастворимую в воде форму. Эмульгатор можно нейтрализовать другим эмульга­тором, способствующим образованию эмульсий обратного типа. Можно добавить вещество более поверхностно-активное, чем эмульгатор, которое само не образует прочных плёнок (так называемый деэмульгатор ). Например, спирты (пентиловый и другие) вытесняют эмульгаторы, растворяют их пленки и способствуют коалесценции капель эмульсии. Эмульсию можно разрушить повышением темпеpaтypы, помещением её в электрическое поле, отстаиванием, центрифугированием, фильтрованием через пористые материалы, которые смачиваются дисперсионной средой, но не смачиваются веществом дисперсной фазы, и другими способами.

ГЛАВА XIV. СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ДИСПЕРСНЫХ СИСТЕМ

§1. Основные понятия и идеальные законы реологии

Важнейшие механические свойства – вязкость, упругость, пластичность, прочность. Так как эти свойства непосредственно связаны со структурой тел, то их обычно называют структурно-механическими.

Структурно-механические свойства систем исследуют методами реологии – науки о деформациях и течении материальных систем. Реология изучает механические свойства систем по проявлению деформации под действием внешних напряжений. В коллоидной химии методы реологии используют для исследования структуры и описания вязкотекучих свойств дисперсных систем.

Термин деформация означает относительное смещение точек системы, при котором не нарушается её сплошность . Деформацию делят на упругую и остаточную. При упругой деформации структура тела полностью восстанавливается после снятия нагрузки (напряжения); остаточная деформация необратима, изменения в системе остаются и после снятия нагрузки. Остаточная деформация, при которой не происходит разрушения тела, называется пластической.

Среди упругих деформаций различают объемные (растяжение, сжатие), сдвиговые и деформации кручения. Они характеризуются количественно относительными (безразмерными) величинами. Например, при одномерном деформировании растяжение выражается через относительное удлинение:

где l 0 и l – длина тела до и после растяжения соответственно; Δl – абсолютное удлинение.

Деформация сдвига определяется абсолютным сдвигом (абсолютной деформацией) y и относительным сдвигом (рис.34) под действием напряжения Р:

(XIV.1)

где у – смещение верхнего слоя (абсолютная деформация); х – высота, на протяжении которой происходит смещение, – угол сдвига. .

Как следует из рис.34, относительный сдвиг равен тангенсу угла сдвига , который, в свою очередь, примерно равен самому углу , если он мал и величина этого угла выражена в радианах.

Рис.34. Схематическое изображение деформации сдвига

Жидкости и газы деформируются при наложении минимальных нагрузок, под действием разности давлений они текут. Течение является одним из видов деформации, при котором величина деформации непрерывно увеличивается под действием постоянного давления (нагрузки). В отличие от газов, жидкости при течении не сжимаются и их плотность остается практически постоянной.

Напряжение (Р ), вызывающее деформацию тела, определяется отношением силы к площади, на которую она действует . Действующая сила может быть разложена на две составляющие: нормальную, направленную перпендикулярно к поверхности тела, и тангенциальную (касательную), направленную по касательной к этой поверхности. Соответственно различают два вида напряжений: нормальные и тангенциальные, которым отвечают два основных вида деформации: растяжение (или сжатие) и сдвиг. Остальные виды деформации можно представить с помощью различных комбинаций этих основных видов деформаций. Единицей напряжения в системе СИ является паскаль (Па ).

Любая материальная система обладает всеми реологическими свойствами. Основными из них, как уже упоминалось, являются упругость, пластичность, вязкость и прочность. Все эти свойства проявляются при сдвиговой деформации, которая поэтому считается наиболее важной в реологических исследованиях.

Таким образом, характер и величина деформации зависят от свойств материала тела, его формы и способа приложения внешних сил.

В реологии механические свойства материалов представляют в виде реологических моделей, в основе которых лежат три основных идеальных закона, связывающих напряжение с деформацией. Им соответствуют три элементарные модели (элемента) идеализированных материалов, отвечающих основным реологическим характеристикам (упругость, пластичность, вязкость): идеально упругое тело Гука, идеально вязкое тело Ньютона (ньютоновская жидкость) и идеально пластическое тело Сен-Венана – Кулона.

Идеально упругое тело Гука представляют в виде спиральной пружины (рис.35). В соответствии с законом Гука деформация в упругом теле пропорциональна напряжению сдвига Р:

или
(XIV.2)

где G – коэффициент пропорциональности, или модуль сдвига.

Модуль сдвига G является характеристикой материала (его структуры), количественно отражающей его упругие свойства (жёсткость). Из уравнения (XIV.2) следует, что единицей модуля сдвига является паскаль (СИ), т. е. та же, что и для напряжения, так как величина γ безразмерна. Модуль сдвига можно определить по котангенсу угла наклона прямой, характеризующей зависимость деформации γ от напряжения сдвига Р (см. рис.35, б). Модуль упругости составляет для молекулярных кристаллов ~ 10 9 Па , для ковалентных кристаллов и металлов – 10 11 Па и более. После снятия нагрузки идеально упругое тело Гука мгновенно переходит в первоначальное состояние (форму).

Рис.35. Модель идеального упругого тела Гука (а) и зависимость деформации этого тела от напряжения сдвига(б)

Идеально вязкое тело Ньютона изображают в виде поршня с отверстиями, помещённого в цилиндр с жидкостью (рис.36). Идеально вязкая жидкость течёт в соответствии с законом Ньютона . Согласно этому закону напряжение сдвига при ламинарном течении жидкости пропорционально градиенту скорости абсолютного сдвига (абсолютной деформации) dU / dx :

(XIV.3),

где η – коэффициент пропорциональности, называемый динамической вязкостью (динамическая вязкость также иногда обозначается буквенным символом ).

При плоскопараллельном (ламинарном) движении двух слоёв жидкости происходит сдвиг одного слоя относительно другого. Если скорость абсолютного сдвига слоёв жидкости обозначить через U = dy / d t и учесть, что координата х и время t являются независимыми переменными, то с помощью изменения порядка дифференцирования с учётом (XIV.1) можно получить следующее соотношение:

(XIV.4)

где
– скорость относительной деформации сдвига.

Таким образом, закон Ньютона также можно сформулировать следующим образом: напряжение сдвига пропорционально скорости относительной деформации:

(XIV.5)

Реологические свойства идеальных жидкостей однозначно характеризуются вязкостью. Её определение дается уравнениями (XIV.3) и (XIV.5). График зависимости P представляет собой прямую, выходящую из начала координат, котангенс угла наклона этой прямой к оси абсцисс определяет вязкость жидкости. Величина, обратная вязкости, называется текучестью. Если вязкость характеризует сопротивление жидкости движению, то текучесть – её подвижность.

Рис.36. Модель идеально вязкой жидкости Ньютона (а) и зависимость скорости деформации этой жидкости от напряжения сдвига (б)

Единицы вязкости следуют из уравнения (XIV.5). Так как в международной системе единиц напряжение измеряется в паскалях, а скорость относительной деформации в с -1 , то единицей вязкости будет паскаль-секунда (Па·с ). В системе СГС за единицу вязкости принят пуаз (П ) (1 Па·с = 10 П ). Вязкость воды при 20,5°С равна 0,001 Па·с или 0,01 П , т. е. 1 сантипуазу (сП ). Вязкость газов примерно в 50 раз меньше, у высоковязких жидкостей значения вязкости могут быть в тысячи и миллионы раз больше, а у твёрдых тел она может составлять 10 15 -10 20 Па·с и более. Размерность текучести обратна размерности вязкости, следовательно, единицы вязкости обратны единицам текучести. Например, в системе СГС текучесть измеряется в пуазах в минус первой степени (П -1 ).

Моделью идеально пластического тела Сен-Венана – Кулона является находящееся на плоскости твёрдое тело, при движении которого трение постоянно и не зависит от нормальной (перпендикулярной поверхности) силы (рис.37). В основе этой модели лежит закон внешнего (сухого) трения, в соответствии с которым деформация отсутствует, если напряжение сдвига меньше некоторой величины Р * , называемой пределом текучести, т. е. при

P P *

Если напряжение достигнет предела текучести, то развиваемая деформация идеально пластического тела не имеет предела, и течение происходит с любой скоростью, т. е. при

P = P * >0 >0

Эта зависимость показана на рис.37, б. Из нее следует, что к элементу сухого трения (идеально пластическому телу) не может быть приложено напряжение, превышающее P* . Величина P* отражает прочность структуры тела. При условии Р = P* структура идеального пластического тела разрушается, после чего сопротивление напряжению полностью отсутствует.

Сравнение идеальных элементов (реологических моделей) показывает, что энергия, затраченная на деформацию упругого тела Гука, возвращается при разгрузке (после прекращения действия напряжения), а при деформации вязкого и пластического тел энергия превращается в теплоту. В соответствии с этим тело Гука принадлежит к консервативным системам, а другие два – к диссипативным (теряющим энергию).

Поделитесь с друзьями или сохраните для себя:

Загрузка...